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Near-field coupled plasmonic systems generally achieve plasmonically induced transparency (PIT) using
only one-way bright–dark mode coupling. However, it is challenging to realize such well-designed devices,
mainly because they depend significantly on the polarization direction. We exploit surface plasmons sup-
ported by two crossed layers of graphene nanoribbons (GNRs) to achieve dynamically tunable PIT, where
each GNR operates as both the bright and dark modes simultaneously. The proposed PIT can result from
either one-way bright–dark mode interactions or bidirectional bright–bright and bright–dark mode hybrid-
ized coupling when the polarization is perpendicular/parallel or at an angle to the GNRs, respectively.
Additionally, identical ribbon widths yield polarization-insensitive single-window PIT, whereas different
ribbon widths produce polarization-dependent double-window PIT. We examine the proposed technique
using plasmon wave functions and the transfer matrix method; analytical and numerical results show ex-
cellent agreement. This study can provide physical insight into the PIT coupling mechanisms and advance
the applicability and versatility of PIT-based sensing platforms and other active devices. © 2018 Chinese
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OCIS codes: (270.1670) Coherent optical effects; (240.6680) Surface plasmons; (280.4788) Optical sensing and sensors.
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1. INTRODUCTION

Surface plasmons, the collective oscillation of conduction elec-
trons that propagate between the interfaces of insulating and
conducting media, are among the most important forms of
strong light–matter interaction [1]. Because they can confine
incident optical waves at the subwavelength scale and enhance
the local electromagnetic field, this appealing optical phenome-
non has found many applications in various types of metallic
systems, including smooth and corrugated films [2], nanostrips
[3], and nanoparticles [4]. However, the limited tunability of
the permittivity functions and the enormous material losses of
traditional metallic materials in the frequency ranges of interest
have hindered further development of plasmons. These limita-
tions were overcome with the rise of graphene, a flat monolayer
of tightly packed carbon atoms arranged in a honeycomb crystal
structure [5]. This very promising material has already been
shown to possess superior optical, mechanical, and thermal
properties [6,7]. In particular, the doping concentration of gra-
phene can be electrostatically tuned in a large range [8]. Owing
to these unique properties, graphene surface plasmons possess
attractive properties such as dynamic tunability, extreme
confinement, and relatively low losses in the mid-infrared

and terahertz regions [9,10], making graphene the most prom-
ising candidate for use in active tunable plasmonic devices
[10,11]. Consequently, graphene plasmonics has triggered
many significant applications, such as light absorption [12],
switching [13], and sensing [14], and revealed other interesting
phenomena, such as nonlinear optics [15] and plasmonically
induced transparency (PIT) [16,17].

PIT is characterized as the appearance of a remarkable
absorption or transmission window in the spectrum that elim-
inates resonant absorption as a result of strong near-field Fano
interference [18]. In past decades, PIT has enriched a variety of
important plasmonics applications such as slow light propaga-
tion [19], optical storage [20], plasmonic switching [13], and
holographic imaging [21]. To realize such coherent light–
matter interaction, systems such as single-layer nanostructured
[22–26] or metal–graphene hybrid [27] metamaterials, multi-
layer graphene sheets [16,17,28], and waveguide structures
[29–32] have been proposed. Most PIT effects result from
interaction between the superradiant (radiative/bright) mode
and subradiant (dark) mode with symmetric breaking of the
periodic system [22,24,25,29,32,33]. For this reason, almost
all of the observed transparency windows in either metal- or
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graphene-based nanostructured PIT systems can be obtained
using incident waves with only one or several particular polari-
zation directions to excite the bright mode [16,17,22–28,
33–37], and completely polarization-insensitive PIT effects
have rarely been reported [38]. In addition, owing to the geo-
metrical asymmetry of the two modes, each of the nanostruc-
tured resonators is predetermined to represent only the bright
or the dark mode and cannot represent the opposite mode
[16,17,22–28,33,34,36]. Moreover, most explanations of PIT
are limited to classical coupled oscillator systems [16–18,22,
26,27], which require numerical fittings that necessitate time-
consuming simulations and therefore may not provide as much
physical insight as analytical calculations do.

In this paper, we propose an easily implemented and
dynamically tunable PIT system composed of two crossed
layers of periodic graphene nanoribbons (GNRs). We show
that when the ribbons in both layers have the same geometric
parameters, the GNRs exhibit equivalent plasmonic coupling,
and the resulting PIT is totally polarization insensitive. When
the two layers have dissimilar widths, the asymmetric inter-
actions will result in double-window PIT. In both cases, each
GNR can operate as only the bright mode, only the dark mode,
or both modes simultaneously depending on the polarization.
By introducing plasmon wave functions (PWFs), which are the
induced charge density profiles associated with confined plas-
monic modes, combined with the transfer matrix method
(TMM), excellent agreement between numerical and analytical
calculations is obtained. These outstanding properties of the
proposed PIT system are essential to understanding the funda-
mental nature of PIT and can greatly advance the practical
design of plasmonic devices.

2. DESIGN AND MATERIALS

The system under study is schematically depicted in Fig. 1.
Two layers of periodic GNRs are placed parallel to the x − y
plane and separated by a distance d . The upper-layer
GNRs (ULGNRs) are periodic in the x direction and extend
infinitely along the y direction, whereas the lower-layer GNRs
(LLGNRs) are rotated by 90° relative to the ULGNRs. The
geometric parameters, defined as shown in Fig. 1, are fixed
as follows unless otherwise specified: W 1 � W 2 � 50 nm,
Λ1 � Λ2 � 100 nm, and d � 20 nm. The dielectric con-
stants of the three subdivided regions are set to n1, n2, and
n3. For simplicity, the GNRs are assumed to be embedded
in a homogeneous dielectric with n1 � n2 � n3 � 1, unless
otherwise specified. This approximation is chosen to elucidate
the fundamental principles of PIT and to emphasize the cou-
pling mechanism between the GNRs; it has been used in many
theoretical studies [39–44] because its simplicity does not affect
any of the fundamental conclusions. It can be trivially extended
to a practical situation such as graphene sheets separated by a Si
or SiO2 spacer with permittivity ε2 and further covered by two
independent ion-gel gates with dielectric constant ε1 � ε3
[10,11,28,45]. Technologically, realization of the proposed
PIT system is experimentally feasible using the well-developed
patterning techniques recently used to prepare layered GNRs
with similar, and even smaller, geometrical values [28,45,46].

The proposed structure is simulated by the finite-difference
time-domain (FDTD) method using Lumerical FDTD
Solutions. In our simulations, periodic boundary conditions
are imposed along both the x and y axes, and perfectly matched
layers are applied on the top and bottom of the unit cell to
absorb all the light approaching the boundaries. Broadband
plane waves are incident from the z direction at the polarization
angle θ with respect to the x axis and are normal to the gra-
phene surface throughout our analyses. The mesh size inside
the graphene layer is set to 0.2 nm along the z axis and
2 nm along the x and y axes, and the mesh size gradually in-
creases outside the graphene layer. To ensure the validity of the
simulation, a simulation time of 5000 fs and the highest mesh
accuracy are set in the mode. Because the GNRs are tens of
nanometers wide, it is necessary to mention quantum versus
classical effects. The optical responses of nanostructured
graphene described by first-principles calculations and classical
local electromagnetic theory have been shown to be in good
agreement, provided that the size of the graphene topography
exceeds 10 nm [39,43]. Thus, in our work, we use classical
descriptions to study the optical response of the GNRs while
reasonably neglecting any quantum finite-size and edge effects
(zigzag and armchair configurations). The graphene film is
modeled by the random-phase approximation (RPA) in our
numerical simulations and also in theoretical analyses [5,9].
Within the RPA, the optical conductivity σ of doped graphene
can be approximately written as a Drude-like expression in the
spectral range of interest: σ�ω� � ie2EF∕�πℏ2�ω� iτ−1��
[10,45,47]. Here, EF � ℏνF �ngπ�1∕2 is the chemical potential
of graphene, which is determined by the carrier concentration,
ng � �μ∕ℏνF �2∕π [where μ � 15, 000 cm2∕�V · s� is the
measured dc mobility, ℏ is the reduced Planck constant, and
νF � 106 m∕s is the Fermi velocity] and which can be tuned

Fig. 1. Schematic of the PIT system. Two layers of periodic GNRs
with crossed ribbon directions are placed parallel to the x − y plane; the
upper and lower layers have ribbon widthsW 1 andW 2 and transverse
periods Λ1 and Λ2, respectively. The layers are separated by a distance
d . The ribbon layers are assumed to be separated by a conductive Si or
SiO2 spacer with refractive index n2 and further covered by two in-
dependent ion-gel gates with refractive indices n1 � n3. The Fermi
levels of the GNRs can be tuned simultaneously by applying two in-
dependent bias voltages between the two top gold gates and the con-
ductive spacer. A normally incident plane wave with wave number β0
and polarization angle θ with respect to the x axis strikes the surface of
the periodically structured graphene system.
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by electrical gating [10,11,28,45]. Further, ω is the angular
frequency of the incident light, and τ is the carrier relaxation
time, which satisfies the relationship τ � μEF∕�ev2F �. Unless
otherwise specified, we fix EF at 0.6 eV, which is a relatively
conservative value compared with the highest experimentally
feasible values (≥ 0.8 eV) [48,49]. The permittivity of
graphene is modeled by an anisotropic dielectric tensor consid-
ering its single-atom thickness. Its z component is set to εzz �
2.5 on the basis of the dielectric constant of graphite, and
the in-plane components are εxx � εyy � 2.5� iσ�ω�∕�ε0ωt�
[10,50,51], where ε0 is the vacuum permittivity, and
t � 1 nm is the thickness of graphene. The value of t is rea-
sonable here owing to the large difference between the thick-
ness and the width of the graphene. The simulated results show
excellent agreement for t � 0.34, 0.5, and 1 nm, provided that
the mesh is sufficiently fine. We emphasize that in this work we
focus exclusively on the optical properties of the layered system;
thus, we assume that the GNRs are homogeneously doped in
each layer and have uniform distributions of the Fermi energy
EF over their surfaces.

3. RESULTS AND DISCUSSION

A. PIT with Single Transparency Window
In recent years, the nanophotonics community has focused on
GNRs as one of themost important building blocks in the nano-
structured graphene family because they are relatively easy to
obtain experimentally and they can confine optical fields below
the diffraction limit by supporting localized plasmons (mainly
Fabry–Pérot-like standing wave resonances) [11,47,51] or
propagating plasmons [40,52]. These resonances depend criti-
cally on the ribbon width and optical properties, the control of
which at the atomic scale is a major challenge. In this section,
we exploit the properties of GNRs and the plasmonic coupling
between them to demonstrate an extraordinary PIT effect.

In Fig. 2, we show the results of electromagnetic simulations
of the setup shown in Fig. 1 under excitation by a normally
incident plane wave with θ � 0° (that is, with the electronic
field polarized perpendicular to the ULGNRs). Two transmis-
sion dips (absorption peaks) are clearly visible at 4.55 and
3.71 μm. The one at the longer resonant wavelength is dom-
inant for transmission as low as 3.89% (or absorption reaching
30.71%), whereas that at the shorter resonant wavelength is
characterized by a transmission dip of 8.86% (or an absorption
peak of 41.68%), indicating that these two modes are very
strongly coupled under external incidence, as shown in
Figs. 2(a) and 2(b). In Fig. 2(c), we also calculated the delay
times at the two sharp notches, which reach −1.39 and
−1.12 ps, respectively, indicating fast light propagation in the
system. Note that, because the fast light effects occur at the
transmission minima, the better fast light performance comes
at the cost of lower light transmission through the system,
making the fast light effect meaningless.

To understand the physical mechanisms behind this PIT,
we first analyze the system with only the ULGNRs.
Figure 3(a) shows the results of numerical simulations of trans-
mission with only the ULGNRs (upper panel) and only the
LLGNRs (lower panel). It can be concluded that plasmon
oscillations can be strongly excited when the incident wave

is polarized perpendicular to the transverse ribbon direction.
Under this condition, the GNRs operate in the bright mode.
Plasmons cannot be excited when the polarization of the inci-
dent wave is parallel to the GNRs because of a strong momen-
tum mismatch. In this case, they can be treated as the dark
mode. Excitation of plasmons in GNRs can be understood
by considering the induced charge density ρind or the induced
dipole/multipole moment pind [see Appendix A, Eqs. (A14)
and (A17)]. As these parameters are both proportional to
the external incidence Eext, they will reach their maximum and
minimum when they are perpendicular and parallel to the
GNRs, respectively. Note that these conclusions are in agree-
ment with experimental results [11,53,54]. For the two-layer
system, because the ribbons are oriented perpendicular to each
other, the case with only LLGNRs is the same as that with only
the upper layer, except for a polarization angle difference of 90°.
It is indeed this difference that causes the different excitation
efficiencies of the two layers; because the incident waves are
polarized perpendicular to the ULGNRs and parallel to the
LLGNRs (θ � 0°), plasmons in the ULGNRs can be excited
directly and therefore represent the bright mode. Conversely,
the LLGNRs represent the dark mode but can be induced
by the bright mode. This bright–dark mode interaction
causes PIT.

This coupling mechanism can be ruled out by examining
the electric field distributions and the corresponding Ez com-
ponents at the two transmission dips, which are plotted in
Figs. 3(c), 3(f ), 3(i), and 3(l). According to the spatial distri-
butions of the Ez components parallel to the x − y plane, the
mode at 4.55 μm shows an antiphase resonance within the two
layers. This mode is called the quasi-asymmetric mode (QAM)
because it results from the out-of-plane nature of the structure.
The mode at 3.71 μm shows the in-phase resonance, which is
called the quasi-symmetric mode (QSM). In addition, these

Fig. 2. (a) Transmission and (b) absorption spectra of the structure
with normal incidence and polarization angle θ � 0°. Solid green
curves and symbols represent the analytical and numerical results,
respectively. (c) Transmission phase (left vertical axis) and delay time
(right vertical axis) of the spectra shown in (a) and (b).
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figures clearly show the structure of these modes. The Ez com-
ponents of the electric field show a dipole mode resonance char-
acterized by a 2π phase shift in each period [51]; thus, these two
modes are the only fundamental modes. Strong enhancement
of the electromagnetic fields is observed for both of these
modes, as their absorption exceeds 30%. Interestingly, the po-
larity of the ULGNRs is the same as that for only ULGNRs in
these modes, as shown in the inset of Fig. 3(a). In contrast, for
the LLGNRs, the polarity of the induced fields has the opposite
distribution in the two modes, as shown in Figs. 3(f ) and 3(l).
Indeed, the polarity inversion defines two forbidden transitions
at separate resonances while giving rise to an allowed transition
window that is shifted in the transmission spectrum relative to
the original case with only ULGNRs [Fig. 2(a)].

In addition to the introduction of bright and dark modes, an
excellent feature of such a layered system is its insensitivity to
the polarization direction. Figure 3(b) shows that both the
transmission dips and the resonant positions in the PIT spectra
are totally insensitive to the polarization angle. This can be

understood by considering the induced fields in the two layers.
As described by Eq. (C1) in Appendix C, the resonant moment
Pl (where l � 1 or 2 is the layer order) in each GNR is propor-
tional to the external field. For the ULGNRs, this resonant
moment is a cosine function, whereas for the LLGNRs, it is
a sine function. Owing to the distinctive geometric arrange-
ment of the two graphene layers, when the polarization angle
θ changes, regardless of whether the excitation efficiency has
been enhanced or weakened in the upper layer, it will be com-
pensated for by the lower layer, making the system polarization
insensitive.

To demonstrate the mechanism more clearly, we plot the
electric field distributions at polarization angles of 0°, 45°,
and 90° in Figs. 3(c)–3(n). We first note that when θ � 90°,
the field distribution is just the reverse of that when θ � 0°.
This is because the LLGNRs operate as the bright mode,
whereas the ULGNRs operate as the dark mode. In particular,
when θ � 45°, both the ULGNRs and LLGNRs can be
directly excited at the same position [Fig. 3(a)], where the
two layers will interact further with each other. Considering
that the coupling Cl between the two graphene layers [see
Appendix B, Eq. (B3)] contributes to both the intralayer
and interlayer interactions, and that the geometrical parameters
are the same in the two layers (e.g.,W 1 � W 2, and Λ1 � Λ2),
the interactions between them, C1 and C2, are equivalent.
Further, the only supported modes in the two layers will be
excited at the same position [11,40]. Thus, the plasmon
waves in each ribbon can be thought of as a combination of
directly excited waves and induced ones, as clearly shown in
Figs. 3(f )–3(h) for the QAM and in Figs. 3(l)–3(n) for the
QSM. That is, at both the QAM and QSM resonances, both
the ULGNRs and LLGNRs operate as the bright and dark
modes simultaneously at the same position, which is vastly
different from the usual PIT behavior, where the bright and
dark modes can be generated only in different resonators under
one particular polarization direction of the incident waves
[16,17,22–28,33].

By further tracking the induced polarizability in each ribbon
from the moment Pl and the coupling Cl between them using
the PWFs, the transmission t l , reflection rl , and absorbance Al
coefficients of the l th graphene layer can then be obtained us-
ing Eqs. (C2)–(C4) in Appendix C. Then, the total transmis-
sion, reflection, and absorption efficiencies of the dielectric–
graphene hybrid multilayer system can be calculated using
the TMM with Eqs. (D3)–(D5) in Appendix D. We obtain
excellent agreement between the numerical and analytical cal-
culations, as illustrated in Figs. 2(a) and 2(b), where the dots are
calculated from Maxwell’s equations using the FDTD method,
and the solid curves correspond to the analytical models using
the combined PWFs and TMM.

Because strong coupling causes the induced transparency
effect, anything that strongly affects the coupling pathway will
serve as a tuning parameter for the transparency window. To
identify such parameters, we first conducted parametric studies
with θ � 0° by varying the ribbon widths of the bright mode
(W 1) and the dark mode (W 2) from 20 to 100 nm, as shown in
Figs. 4(a) and 4(b), respectively. Because the ULGNRs re-
present the bright mode, a change in their width directly affects

Fig. 3. Two-dimensional plots of normal-incidence transmission
showing the wavelength versus the polarization angle θ for the pro-
posed system with (a) only ULGNRs (upper panel) and only
LLGNRs (lower panel) and (b) two-layer GNRs. The left inset in
(a) shows the Ez component of the incoming beam at 4.26 μm with
only ULGNRs; the right inset plots the transmission dips for only
ULGNRs (dark line) and only LLGNRs (red line) versus the polari-
zation angle θ. The inset in (b) depicts the transmission dips of the
QAM and QSM versus the polarization angle θ. Spatial distributions
of (c)–(e), (i)–(k) the electric field and (f )–(h), (l)–(n) the correspond-
ing z component of the (c)–(h) QAMs and (i)–(n) QSMs at polari-
zation angles θ of (c), (f ), (i), (l) 0°, (d), (g), (j), (m) 45°, and (e), (h),
(k), (n) 90°. Plus and minus signs denote the oscillating surface
charges; darker color represents higher charge density.
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the excitation efficiency of the entire system. For example,
when W 1 is small enough, the coupling with the external field
is weak, and therefore the system becomes transparent. In par-
ticular, when W 1 � 100 nm (that is, the ULGNRs become a
graphene sheet), the two graphene layers are all dark, and the
PIT disappears. In contrast, variation of the dark mode (W 2)
can modulate only the window distance and the linewidth of
the QAM and QSM but cannot eliminate the high coupling
efficiency. Even when the LLGNRs become an integrated car-
bon sheet (W 2 � 100 nm), the two induced modes are still
fully coupled, as in a two-dimensional case reported earlier
[34]. On the other hand, as we fix the ribbon widths and then
tune the interlayer separation d , the coupling strength decreases
monotonically [see Appendix B, Eq. (B3)], increasing the trans-
parency of the QSM and further resulting in an asymmetric
transmission line shape, as shown in Fig. 4(c). At the same
time, the two modes approach each other. At a sufficiently large
distance (e.g., >80 nm), as expected, the two layers are almost
uncoupled because the lower layer is well beyond the decay
length of the evanescent diffraction orders of the upper layer
[Fig. 8(d)]. As a result, the symmetric mode is extinguished
(that is, it becomes dark), and only the antisymmetric mode
remains.

In addition to their geometrical structures, an intriguing
property of graphene-based plasmonic devices (as compared
with metal-based structures) is their ultrabroad and active tun-
ability, which is achieved by electrostatic gating techniques.
This property allows the transmission window of the designed
PIT systems to be dynamically modulated to different positions
by electrically changing the Fermi energy of graphene without
reoptimizing the physical structure [10,11]. By employing an
electrolytic gate, the Fermi energy level has been experimentally
increased to 0.8 eV [48] or even higher (1.2 eV) [49] after a
high bias voltage was applied by a field-effect transistor

structure; thus, in this paper, we conservatively assume that
the Fermi energy EF can be continuously tuned from 0.2 to
0.6 eV. Practically, as shown in Fig. 1, this dynamic tunability
can be achieved by applying individual voltages to the gates on
both sides, which allows the carrier concentration in each gra-
phene sheet to be uniformly and independently controlled. The
simulated transmission map shown in Fig. 5(a) confirms the
broadband and dynamic tuning with changes in the Fermi
level. For a given ribbon width and coupling distance, the plas-
mon wavelengths are described by a scaling behavior, λ ∝
�1∕EF �1∕2 [40,47,51], as indicated by the lines with symbols
in the inset of this figure. This universal relation is characteristic
of two-dimensional electron gases [11] and will be advanta-
geous in the design of active graphene optoelectronic devices.

In addition to their dynamic tunability by the doping con-
centration, the induced QAM and QSM are extremely sensitive
to the local dielectric environment, as confirmed by the PWFs
in Eqs. (B7) and (C2)–(C4) in Appendices B and C, so they can
be effectively used to design a refractive index sensor. As shown
in Fig. 5(b), we calculate the sensitivities of the two modes for
fully angular polarizations when the layered GNRs are im-
mersed in media characterized by different values of the
refractive index n between 1.0 and 1.1. To quantify the per-
formance of the system, we define the parameter sensitivity
as S ≡ Δλ∕Δn, which specifies the resonance wavelength shift
per refractive index unit (RIU). We observe that the QAM
yields a shift of 4.31 μm/RIU, whereas the QSM shows a
smaller shift of 3.42 μm/RIU. These values are larger than
those found in other studies [16,55–57]. In particular, we note
that these two values are completely independent of the polari-
zation angle, unlike the directionally constrained structures that
have been reported [16,43,55–57]. To the best of our knowl-
edge, this is the first report on a completely polarization-insen-
sitive refractive index sensor that does not use any rotationally
symmetric structures (such as disks). This complete polariza-
tion angle insensitivity will greatly advance practical sensing
applications.

B. PIT with Two Transparency Windows
In the previous section, we demonstrated that by designing two
crossed GNR layers, obvious PIT with a single transparency
window is obtained, and we further analyzed it numerically
and theoretically. Because the geometrical parameters of the

Fig. 4. Transmission maps of the system at a polarization angle θ of
0° showing the incident wavelength versus (a) the ribbon widthW 1 of
the ULGNRs, (b) the ribbon width W 2 of the LLGNRs, and (c) the
distance d between the two layers.

Fig. 5. (a) Two-dimensional transmission map of the system plotted
as the wavelength versus the Fermi level EF . The inset, which has the
same coordinates as the main plot, compares the analytically calculated
resonant wavelengths (lines) and the numerical solutions of the system
(symbols). (b) Refractive index sensitivity of the QAM and QSM as a
function of polarization angle θ.
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two layers are identical, the equivalent and complementary cou-
pling behavior yields total insensitivity to the polarization an-
gle. However, for different polarization directions, the induced
transparency can be the result of either one-way bright–dark
mode interactions (when the polarization angle is perpendicular
or parallel to the GNRs) or hybridized coupling of bidirectional
bright–bright and bright–dark modes (when the polarization
angle is inclined with respect to the GNRs). It is well known
that the optical properties of a system rely fundamentally on the
symmetry of its constituent parts. This is particularly true of
plasmonic systems, where the observation of exotic optical ef-
fects such as PIT requires the coupling of modes that emerge
only in systems with nontrivial broken symmetries. In this sec-
tion, this concept will be illustrated by using graphene layers
with unequal widths. The inequivalent interactions in systems
with a solid upper layer and systems with a solid lower layer
result in PIT with two transparency windows.

Figure 6(a) maps the transmission as the incident wave-
length versus the polarization angle θ when W 1 � 40 nm
and W 2 � 60 nm. This figure indicates that, in contrast to
that of the system with equal ribbon widths [Fig. 3(b)], the
transmission is highly polarization dependent. To show this
more clearly, we selected the spectra for θ � 0°, 45°, and 90°,
as plotted in Fig. 6(b). When the polarization is perpendicular
or parallel to any layer (0° and 90°, respectively), two transmis-
sion dips and only one transmission window appear at different
positions. Interestingly, when the polarization is inclined with
respect to the ribbons, there are four well-defined forbidden
transitions at separate resonances. Two allowed transition win-
dows appear in the transmission spectrum and are shifted rel-
ative to those of the two original systems with only ULGNRs
and LLGNRs [Fig. 6(b)].

To reveal the physical concepts underlying the PIT with
two transparency windows, the near-field intensity distribu-
tions in the graphene plane are computed and are plotted in
Figs. 6(c)–6(f ) for the four transmission dips labeled in

Fig. 6(b) for θ � 45°. There are two reasons for the four for-
bidden transitions in the spectrum. First, as the fundamental
components excite surface plasmon waves, GNRs support
size-dependent plasmonic resonances. The resonance wave-
length can be described as a function of the width, λ ∝
W 1∕2 [40,47,51]; thus, the supported bright and dark modes
in the two layers will occur at different positions. Second, the
differing ribbon widths of the two layers result in unequal
coupling strengths C1 and C2 [see Appendix B, Eq. (B3)].

The nature of the charge density of these four plasmon res-
onances indicates that they are all hybrid fundamental dipole–
dipole coupled modes. The two modes labeled c and e in
Fig. 6(b) originate from direct excitation of the LLGNRs and
their further coupling with the dark mode (ULGNRs). On the
basis of the arrangement of their dipole moments [Figs. 6(c)
and 6(e)], these two modes are called the first-order QAM1
(FOQAM1) and first-order QSM1 (FOQSM1), respectively.
The other two modes, labeled d and f in Fig. 6(b), are
the result of direct excitation of the ULGNRs and their further
interactions with the dark mode (LLGNRs). Similarly, as
shown in Figs. 6(d) and 6(f ), these two modes are called the
first-order QAM2 (FOQAM2) and first-order QSM2
(FOQSM2), respectively. That is, the two graphene layers op-
erate as both the bright and dark modes simultaneously in this
double PIT effect. This coupling mechanism is very different
from those that arise from one bright mode coupled with two
dark modes [58,59]. In addition, to further confirm that the
multiple transmission windows are indeed two PIT windows,
we calculated the corresponding group delay times and found a
maximum value of −1.33 ps, which implies that the system
with different ribbon widths exhibits fast light behavior.
Again, by applying PWFs combined with the TMM (see
Appendices A–D), we find excellent agreement between the
numerical and analytical calculations, as shown in Fig. 6(b).

4. CONCLUSIONS

We demonstrate numerically and theoretically that PIT is
achievable using two crossed GNR layers. Each GNR layer
can operate as either the bright mode, the dark mode, or both
the bright and darkmodes simultaneously when the polarization
is perpendicular/parallel or tilted with respect to the GNRs, re-
spectively. Specifically, when the two layers are designed with
equal (unequal) ribbon widths, the geometrically induced sym-
metric (asymmetric) plasmon excitations and interlayer coupling
produce single-window (double-window) PIT with high
polarization independence (dependence). Finally, the proposed
concepts are analyzed using PWFs combined with the TMM. In
all cases, the agreement between the analytical and numerical
results is nearly perfect. The proposed designs and developed
methods are essential to understanding recent reports and the
fundamental coupling mechanisms of PIT and could advance
practical applications of graphene-based plasmon devices,
including optical modulators and plasmonic sensors.

APPENDIX A. EIGENMODE RESONANCES AND
PWFS IN A SINGLE GNR

The GNRs examined in this work have widths much smaller
than the resonant wavelengths associated with their plasmon

Fig. 6. (a) Transmission map of the symmetry-broken PIT system
with W 1 � 40 nm and W 2 � 60 nm plotted as the wavelength ver-
sus the polarization angle θ. (b) Transmission spectra of the system for
polarization angles of 0°, 45°, and 90°. Green circles represent the
ULGNR-only case with W 1 � 40 nm, and blue circles represent
the LLGNR-only case with W 2 � 60 nm. The red solid curves are
obtained using the analytical model, and the numerical results are pre-
sented as black circles. (c)−(f ) Spatial distributions of the electric fields
at the positions of the transmission dips extracted from (b) for
θ � 45°. Plus and minus signs indicate the oscillating surface charges.
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frequencies. Thus, we can safely describe their optical response
in the electrostatic limit. We begin our analyses with the case of
a single graphene island. Following the formalism from the
low-dimensional structures presented in Refs. [42–44], we in-
tend to find the electric field E produced by a planar GNR in
response to a normal-incidence field arriving from the z
direction, Eext�r,ω� � Eexte−iω�z∕t�t� · �cos θx̂ � sin θŷ�. The
optical electric field can be formulated as a self-consistent
equation [10,43,60]:

E�r,ω� � Eext�r,ω� � i
εω

∇r

Z
d2r 0

jr − r 0j �∇r 0 · σ�r 0,ω�E�r 0,ω��,

(A1)

where ε is the average permittivity of the materials surrounding
the graphene plane. The integral is the induced scalar potential,
and the expression in square brackets represents the induced
charge density, which can be further written in terms of the
current by using the two-dimensional, local, space- and fre-
quency-dependent Drude model of the anisotropic graphene
conductivity σ�r,ω� [50]. We further assume that for homo-
geneously doped graphene, the conductivity can be separated as
σ�r,ω� � f �r�σ�ω�, where f �r� is an occupation function
with a value of 1 when the in-plane position vector r lies within
the graphene plane and 0 elsewhere (a vanishing positive
number in practice). Here, we introduce the dimensionless
coordinate vector R � r∕W , where W is the ribbon width.
We now define [44]

~E�R,ω� � W
ffiffiffiffiffiffiffiffiffiffiffi
f �R�

p
E�R,ω�: (A2)

Equation (A1) can be recast as

~E�R,ω� � ~Eext�R,ω�� η�ω�
Z

d2R 0�∇R 0 ·M�R,R 0�~E�R 0,ω��,

(A3)

where η�ω� � iσ�ω�∕�ωW ε�, and

M�R,R 0� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f �R�f �R 0�

p
∇R ⊗ ∇R

1

jR − R 0j (A4)

is a symmetric matrix that is invariant under exchange of its
arguments: M�R,R 0� � M�R 0,R�. This means that M is a
real, symmetric operator that can produce a complete set of real
eigenvalues 1∕ηj and orthonormalized eigenvectors ~εj for the
jth ordered mode that satisfy [42,44]

~Ej�R� � ηj

Z
d2R 0M�R,R 0� · ~Ej�R 0� (A5)

such that the eigenmodes satisfy the complete orthogonality
condition Z

d2R 0~Ej�R� · ~Ej 0 �R 0� � δjj 0 (A6)

and the closure relationX
j

~Ej�R� ⊗ ~Ej 0 �R 0� � δ�R − R 0�I3, (A7)

where I3 is the 3 × 3 identity matrix in the subspace of the
quasi-static electric field modes.

Using the above eigenmodes, the solution of Eq. (A3) can be
expressed in terms of these eigenmodes as [42]

~E�R,ω� �
X
j

Aj

1 − η�ω�∕ηj
~Ej�R�, (A8)

with the expansion coefficients given by

Aj �
Z

d2R~Ej�R� · ~Eext�R,ω�, (A9)

where, according to the closure relation, we have

~Eext�R,ω� �
X
j

Aj
~Ej�R�, (A10)

which allows us to write the induced field as

~E ind�R,ω� �
X
j

Aj

ηj∕η�ω� − 1
~Ej�R�: (A11)

Here it is convenient to define the PWFs associated with mode
j as

ρj�R� � ∇R ·
ffiffiffiffiffiffiffiffiffiffiffi
f �R�

p
~Ej�R�, (A12)

which describes the induced charge density profiles associated
with confined plasmonic mode j. From Eqs. (A5) and (A6), the
PWFs are found to meet the orthonormality conditionZ

d2R
Z

d2R 0 ρj�R� · ρj 0 �R 0�
jR − R 0j � −

δjj 0

ηj
: (A13)

Using the continuity of the electric field, we can rewrite the
induced charge density ρind as

ρind�R,ω� � ε

W

X
j

Aj

1∕ηj − 1∕η�ω�
ρj�R�: (A14)

By integrating Eq. (A11) by parts, the expansion coefficients
can be reduced to

Aj � −W ~ζj · Eext, (A15)

where

~ζj �
Z

d2Rρj�R�R, (A16)

which is a parameter that acts as the moment of the correspond-
ing mode. Therefore, the induced charge density allows us to
calculate the induced dipole/multipole moment as

pind�ω� � W 3

Z
d2Rρind�R,ω�R: (A17)

Comparing the definition of the polarizability, pind�ω� �
α�ω� · Eext, and inserting Eq. (A14) into Eq. (A17), the
polarizability α�ω� can be expressed as a 3 × 3 tensor,

α�ω� � εW 3
X
j

~ζj ⊗ ~ζj
1∕η�ω� − 1∕ηj

, (A18)

which allows us to calculate the transmission properties of a
GNR from the knowledge of the corresponding PWFs.

To test the above theory, the PWFs of the first four lowest-
order plasmon modes (j � 1 − 4; see labels) in a single GNR
along the transverse ribbon direction are shown in Fig. 7(a).
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The induced charge distributions from the numerical simula-
tions are represented by symbols, and the analytical results from
the PWFs are represented by solid curves. In all cases, the agree-
ment is nearly perfect.

APPENDIX B. ODD-ORDERED MODE COUPLING
IN GNRS

To rule out the role of excitation behavior of different-order
mode resonances and to understand the physical mechanisms
controlling the plasmonic coupling in PIT, we compute the
transmission spectrum of a single GNR under normal inci-
dence, as shown in Fig. 8(a). A cross-sectional view of the z
component of the electric field profile associated with the wave-
lengths with strongest transmission (corresponding to modes
j � 1, 3, 5, 7) is shown in Fig. 8(b). We observe a standing
wave pattern for each mode with increasing mode order for
decreasing wavelength. A comparison of Fig. 8(b) with
Fig. 7(b) reveals that only odd-ordered modes with odd-sym-
metric phases at the ribbon boundaries are generated. This is
because only plasmonic modes with odd multiples of half-
wavelengths can couple with normally incident light, as this
produces an effective charge dipole that creates the necessary
restoring force for collective oscillating waves. The lack of
even-ordered modes can be explained as follows. Owing to
the symmetry of the GNR around the axis, the induced charge
density of the even-ordered modes has even symmetry; thus,
the mode moments ~ζjjeven � 0 [see Eq. (A16)] under a nor-
mally incident field, which has been shown both theoretically
and experimentally [53,61]. Therefore, in the following analy-
ses, only j � 2m� 1 (with m � 0, 1, 2…) ordered mode
resonances are considered.

We now consider plasmonic coupling among multiple
GNRs. We denote the nth ribbon in the l th layer (with l �
1 or 2) by ln and the center position by rln. The other param-
eters of the lnth ribbon are the conductivity σln�ω�, eigenvalue
ηlnj, eigenmode ~E lnj, PWF ρlnj, and mode moment ~ζlnj for
plasmon modes j � 2m� 1. The corresponding position vec-
tors are defined as R � �r== − rln�∕W ln, where r== is the
in-plane position vector of the related lnth ribbon, and W ln
is the width of the lnth ribbon. Note that R is a global variable

that runs over the surfaces of all of the ribbons and is
normalized within each of the corresponding ribbon widths.
Therefore, the induced charge density can be decomposed as
a sum of the contributions from each ribbon in a self-consistent
form [43,44]

ρind�R,ω� �
X
lnj

alnj�ω�ρlnj�R�, (B1)

with the expansion coefficients

alnj�ω� �
ε

W ln
·

1

1∕ηlnj − 1∕ηln�ω�

×
�
Alnj �

X
l 0n 0≠ln

X
j 0

Clnj,l 0n 0j 0al 0n 0j 0 �ω�
�
, (B2)

where Alnj � −W ln
~ζlnj · Eext, and ηln�ω�� iσln�ω�∕�ωW lnε�.

Further,

Clnj,l 0n 0j 0 �
W 2

l 0n 0

ε

Z
ln
d2R

Z
l 0n 0

d2R 0 ρlnj�R� · ρl 0n 0j 0 �R 0�
jW lnR −W l 0n 0R 0 �dlnl 0n 0 j

(B3)

describes the coupling between plasmon modes j and j 0 in
two GNRs ln and l 0n 0 that are separated by a vector
dlnl 0n 0 � rln − rl 0n 0 , where integration over R and R 0 is re-
stricted to the surfaces of each nanoribbon. Note that the above
equations take into account both the interlayer and intralayer
coupling among the lower and upper graphene layers. After
Eq. (B3) is solved, the induced moment on ribbon ln can
be expressed as

Pln �
X
j

W 3
lnalnj · ~ζlnj: (B4)

Fig. 7. (a) PWFs of the four lowest-ordered plasmon modes
(j � 1 − 4; see labels) in a graphene ribbon along the transverse ribbon
direction. The symbols represent the numerical model, and the solid
curves represent analytical functions. (b) Electric field Ez components
of the first four modes (j � 1 − 4; see labels). Note that the color bars
are the same. The numerical results in this figure were obtained at a
fixed wavelength (4547.4 nm) using eigenmode analyses with a ribbon
width W of 50 nm and Fermi level of graphene EF of 0.6 eV.

Fig. 8. (a) Simulated transmission (red line) and absorption (blue
line) spectra of a single GNR, where the ribbon width and graphene
parameters are set to the same values as in Fig. 7. (b) Electric field Ez
components of the first four modes (j � 1, 3, 5, and 7; see labels)
show excitation of only the odd-ordered modes at normal incidence.
Note the differences between the color bars. (c) and (d) Spatial
distributions of the normally excited electric fields for the first six
lowest-ordered modes in the directions parallel and perpendicular
to the graphene surface, respectively.
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Then, it is convenient to rewrite Eq. (B2) in terms of these
moments as

Pln � αln�ω� · �Eext �
X

l 0n 0≠ln
Clnl 0n 0P 0

ln�, (B5)

where

Clnl 0n 0 � −
X
j

C lnj,l 0nj 0

W 4
ln
~ζlnj ⊗ ~ζlnj

(B6)

is the jth order modes coupling, whereas

αln�ω� � εW 3
ln ·

X
j

~ζlnj ⊗ ~ζlnj
1∕ηln�ω� − 1∕ηlnj

(B7)

describes the ribbon polarizability per unit length of the lnth
ribbon.

APPENDIX C. DIPOLE–DIPOLE MODEL OF
PERIODIC GNRS

The spatial distributions of the normally excited plasmonic
fields for the six lowest-ordered modes are shown in Figs. 8(c)
and 8(d). Field singularities are avoided by using rounded
corners at the edges, where the radius of curvature corresponds
to half of the graphene thickness. The E field is maximum at
the edge boundaries of the GNR for all modes, and the field
intensities of higher-order modes are orders of magnitude
smaller than those of lower-ordered modes. This is understand-
able because the absorption of higher-order modes is much
lower than that of lower-order ones. Away from the graphene
surfaces, the surface plasmon polariton field decays more rap-
idly with increasing distance from the graphene sheet. The
natural spatial distributions of the induced fields are the dom-
inant factor responsible for the coupling between the GNRs.

In Figs. 9(a) and 9(b), we show the coupling behavior cal-
culated using Eq. (B3) for different coupling distances and dif-
ferent mode orders, respectively. Because the ribbon widths are
the same and the periods are fixed at the same values in both
layers, the induced charge density ρindlnj �R� should be indepen-
dent of n and dependent mainly on the mode order j. Further,
because the charge densities are orthonormal [see Eq. (A13)],
we need to consider only the coupling between modes with the
same order.

We first consider coupling with different coupling distances
for the fixed lowest mode, j � 1. As Fig. 9(a) shows, the cou-
pling strength decreases rapidly with increasing interaction

spacing, and the strength of interlayer coupling is much smaller
than that of intralayer coupling. However, we find that even if
we consider the tenth-nearest-neighbor interactions, the
summed contribution of all these couplings is improved by just
4.7% when compared with the result for only the first-nearest-
neighbor interactions. For the interactions of modes of different
orders, the sum of the coupling of the first six lowest-ordered
modes added only 0.7% to the coupling of the lowest mode,
j � 1. That is, the most prominent coupling corresponds to the
fundamental plasmon mode, and the higher-order resonances
become increasingly weaker. The small contributions from
both the high-ordered modes and widely separated ribbons can
be explained by the spatial distributions of the induced evan-
escent fields; they decay rapidly with increasing distance from
the graphene surface, as shown in Figs. 8(c) and 8(d). These
results suggest that, for the parameters considered in our analy-
ses, long-distance and high-order mode interactions can be
reasonably ignored, and it is enough to consider the leading
contribution of just the first-nearest-neighbor interactions in
the lowest dipole mode.

Therefore, for simplicity, we study only the optical response
of the PIT systemwithin a spectral region dominated by the low-
est-ordered dipole–dipole model (j � 1) within the nearest-
neighbor ribbons. Again, owing to the uniform ribbon width
and period in the two layers, and further considering the geo-
metric symmetry of the system, we find that the total resonant
moment, the corresponding polarizability, and the coupling
strength should be independent of n. Thus,Pln � Pl , αln�ω� �
αl �ω�, and Clnl 0n 0 � Cll 0 , and we can solve Eq. (B5) as

Pl �
Eext

αl �ω� − Cl
, (C1)

where Cl � �1 − δl l 0 �Cll 0 is a matrix of elements. For the case
considered in this appendix, only the nearest-neighbor coupling
for the j � 1 mode is considered. Therefore, we have
Cl � Cl11 � Cl 011, where Cl11 represents the intralayer di-
pole–dipole interaction, which in the long-wavelength limit
(λ ≫ Λ) reduces to 2π2∕3Λ2 [41], and Cl 011 describes the in-
terlayer dipole–dipole interaction [see Eq. (B3)]. Note that even
though this equation is independent of the geometric parameters
of a structure, the polarizability and coupling strengths are still
related to the incident angle.

Ultimately, for periodic GNR arrays, the transmission (t)
and reflection (r) coefficients of the l th graphene layer are then
obtained [41,62]:

t l �
2n�l

n�l � n−l

�
αl �ω� − C

αl �ω� − C − iS

�
, (C2)

rl � t l − 1, (C3)

where S��2πω∕Λc��2∕�n�l �n−l ��, and C�Cl �2∕�n�l �n−l ��;
the superscripts � represent the effective refractive index of
the dielectric above or below the graphene layer. Finally, the
absorbance A of the layer is

Al � 1 − jrl j2 − jt l j2 · n−l ∕n�l : (C4)

Fig. 9. Coupling strengths (a) for different coupling distances of the
j � 1 mode and (b) for different mode orders in the nearest-neighbor
ribbon. The left panels show intralayer (l � 1) and interlayer (l � 2)
coupling, whereas the right panels show the sums of the coupling
strengths.
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APPENDIX D. TRANSFER MATRIX METHOD IN
THE LAYERED SYSTEM

To demonstrate the simulated results, the TMM is used to
theoretically calculate the light propagation in the layered sys-
tem [63]. Considering the ultrathin nature of the graphene
sheet, for simplicity, the structure shown in Fig. 1 is modeled
as a planar three-layer system with three subdivided layers and
two interfaces [dielectric 1 (n1)–graphene interface 1–dielectric
2 (n2)–graphene interface 2–dielectric 3 (n3); see Fig. 1].
According to Maxwell’s equations and with appropriate boun-
dary conditions, the field amplitudes above (Et�

l and Er�
l ) and

below (Et−
l�1 and Er−

l�1) the l th interface (l � 1, 2) can be
expressed as�

Et�
l

E r�
l

�
�
���� 1∕t l rl∕t l
rl∕t l 1∕t l

����
�
Et−
l�1

Er−
l�1

�
� Ml

�
Et−
l�1

Er−
l�1

�
, (D1)

where the superscripts t∕r denote the transmitted/reflected
fields, and � represent the field amplitudes above/below the
graphene interface. We state that in the long-wavelength limit
(λ ≫ d ), the propagation phase in the sandwiched dielectric
layer is negligible. Therefore, the field amplitudes of the input
and output waves in the system can be obtained from the trans-
fer equation�

Et�
1

Er�
1

�
� M 1M 2

�
Et−
3

Er−
3

�
�
����M 11 M 12

M 21 M 22

����
�
Et−
3

Er−
3

�
, (D2)

here M 11 � M 22 � �1� r1r2�∕t1t2, and M 12 � M 21 �
�r1 � r2�∕t1t2.

When incident light impinges only from the top dielectric
layer (that is, Er−

3 � 0) and propagates downward in the
negative-z direction, the reflection R, transmission T , and ab-
sorption A of the multilayer PIT system can be respectively
described as

R � jEr�
1 ∕Et�

1 j2 � jM 21∕M 11j2 � j�r1 � r2�∕�1� r1r2�j2,
(D3)

T � jEt−
3 ∕E

t�
1 j2 � j1∕M 11j2 � j�t1t2�∕�1� r1r2�j2,

(D4)

A � 1 − R − T : (D5)

The accuracy of the models using the PWFs combined with the
TMM is illustrated in Figs. 2(a), 2(b), and 6(b). The dots are
calculated from Maxwell’s equations using the FDTD method.
The solid curves correspond to the analytical models using the
PWFs combined with the TMM. We obtain excellent agree-
ment between the numerical and analytical calculations.
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